If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3^2+b^2=72
We move all terms to the left:
3^2+b^2-(72)=0
determiningTheFunctionDomain b^2-72+3^2=0
We add all the numbers together, and all the variables
b^2-63=0
a = 1; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·1·(-63)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{7}}{2*1}=\frac{0-6\sqrt{7}}{2} =-\frac{6\sqrt{7}}{2} =-3\sqrt{7} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{7}}{2*1}=\frac{0+6\sqrt{7}}{2} =\frac{6\sqrt{7}}{2} =3\sqrt{7} $
| 46p+3p+8p-56p=5 | | 2x+x+1/3x=16.9 | | 6v+10=34 | | 0.25r=0.6 | | 11y+5y+7y-19y+5y+1=37 | | -10n+6=-14 | | -u-20+u=8-14u | | 11y+5y+7y-19y+5y+1=39 | | -18.8=2.3+-5g | | 17w-11w+3w-w=48 | | -3n+10=4 | | -9w=4=4 | | -2(1+z)=-18 | | 2h-4h+8=4h-4 | | 8v+5v+3v-8v=8 | | 10a+4=9a+8 | | 7=x1/5 | | 5k+2k-3k+3=11 | | X^2+-6x+9=0 | | 15x+6=-9 | | 4w-6=6-12-11w | | -6(2+4r)=32 | | 2t-25=t+42 | | 18x+x=100 | | 10b-10b+4b-3b+2=16 | | 2u+7=u+39 | | -4q-17q-20=19q+20 | | 6s-3s-3s+s+1=17 | | 26-4s=9s. | | x÷8=87 | | 2b-65=b | | 2y+5=y+49 |